7 Year Curriculum Plan for Computing – St. Mark's Academy

Computing Department Vision Statement:

The goal of the computing department is that at the end of KS3, all learners are able to confidently use a computer. They can perform tasks that will be required for many jobs, like send and access emails, use word, teams, excel, developing software and solving problems. They should also have a good understanding of how to keep themselves and their computer/phone safe. In our current climate knowing how to keep safe online will be a priority.

Our aim to develop competent coders at the end of KS3. This is why we want to spend lots of time giving students practice. Coding takes many forms, there's block-based vs text-based and front-end vs back-end, so as part of KS3, learners will get the chance to experience coding in all these forms.

We also want learners to gain a good understanding of how a computer works. We want all students to be confident about the fundamentals, so they can use all the right terminology when describing their computer. This will enable them to navigate the real world

These 'big ideas' will feature across each year group with the planned schemes of work incorporating and building on the ideas so that knowledge and skills are repeated and embedded. This will enable the students to be confident on the computer as they complete their 7-year curriculum. At KS4 the students complete either the GCSE Computer Science or BTEC TECH award in Digital Information Technology. The concepts introduced at KS3 as part of these big ideas are built on at KS4.

	Year 7	Year 8	Year 9	Ye	ear 10		Year 11
Autumn Term 1	Under the hood Hardware, Software, CPU,RAM, ROM, Binary, Storage	Networks Network hardware, WWW, topologies, encryption	Data Manipulation Spreadsheet structure, Absolute & relative Cells referencing, formulas, functions, visual representation of data	IT Component 1 <mark>User Interface</mark> Aim A	Computer Science J277/01 Systems Architecture Memory and Storage Programming: Variables, Interactive inputs data types, selection	Component 2 <mark>Collecting Data</mark> Aim A	Algorithms Ethical, legal, cultural and environmental impact Theory Exam Revision
Autumn Term 2	Bebras Problem solving /esafety Problem solving school wide challenges Staying safe online	Bebras Problem solving Problem solving school wide challenges	Bebras Problem Solving Problem solving challenges	Component 1 <mark>User Interface Aim B</mark>	Data Representation Boolean Logic Networks Programming: FOR, WHILE, Subroutines, Arrays, String manipulation	Component 3 Unit D Forms of Notation + Exam Revision	Defensive design Testing Languages IDE Theory Exam Revision
Spring Term 1	Scratch Programming Sequence, variables, selection, iteration	Python Programming Algorithms, variables, errors, selection, iteration	<mark>Python Programming</mark> Recap, data types, boolean, arrays	Component 1 <mark>User Interface Aim C</mark>	Network security System software Programming: File handling Pre Programming project preparation SQL	Exam Component 2 <mark>Collecting Data Aim B</mark>	Searching and Sorting Algorithms Theory Exam Revision
Spring Term 2	Python challenges Text-based programming: variables, selection, loops(FOR & WHILE)	Data Representation Units, denary, hexadecimal conversion	<mark>Python Programming</mark> Recap, data types, boolean, arrays	Component 3 Unit A <mark>Modern Technologies</mark> & <mark>their impact</mark>	Ethical & Cultural issues Environmental issues Legal Issues Paper 1 In class assessment 20 hrs Programming project	Component 2 <mark>Collecting Data Aim C</mark>	Theory Exam Revision Practical Exam Revision

Summer	Spreadsheets	Cyber Security		Component 3	Computational Thinking &	
Term 1	Formatting, primary vs	Malware, hacking, social	Computing systems	Unit B	Writing Algorithms	
	secondary sources, collect	engineering, DDOS,	CPU, architecture, logic gates,	Cyber Security	20 hrs Programming	
	& analyse data, functions	prevention methods	hardware, memory & storage	Preventing Threats	project	
				Policy		
Summer	,			Component 3	Search & Sort Algorithms	
Term 2	Project	Project	Project	Unit C	End of year assessment:	
	FIOJECC	FIOJEC	rioject	Implications of digital	Paper 1 & 2	
				<mark>systems</mark>		
				Legal and ethical		

		BIG IDEA 2: Co	oding	
Coding is one of the most in demand skills in the world. Every piece of	In year 8, students experience coding for the first time in a language that	In year 9, students work exclusively in Python to ensure they have secure	Y10 BTEC won't cover the big idea of coding.	2.1.1 Computational thinking
software we use, every piece of rechnology is made with coding. To ntroduce year 7 to this idea, we use	isn't block based. In Mobile App Development, students use a similar block-based language to scratch, to	and sufficient coding knowledge to prepare them for the rigour of GCSE CS at KS4. We will revisit sequence,	Problem Solving?	Principles of computational thinking:
boraton, a very user-trienaly block- based programming language. Students have often encountered	that students can directly see the impact of in a real-world context.	which should be familiar for students who have been revisiting these		AbstractionDecomposition
Scratch in primary school. We use scratch as a tool to introduce fundamental coding ideas they'll	Later in year 8, students make their own webpages with html. This is front- end coding. Students will be able to	techniques in each coding unit. We will recap what they look like in python and then introduce the idea		Algorithmic thinking 1.2 Designing
need through the rest of KS3 and for KS4. Students are introduced to the dea of variables, selection and	design what a website looks like and understand the basics of what HTML is and how to use it. Finally, in year 8,	of data types, building on their knowledge of variables. We will introduce Boolean, arrays, lists and		creating and refining algorithms
teration – something that will be used in every coding unit students do. Year 7 is students' introduction,	students will encounter Python, the text-based coding language that students will be using throughout	file-handling. All ability students should be able to understand the basic concepts in python and be		Produce simple diagrams to show:The structure of a
evels understand these fundamentals, to be built on later in KS3.	variables, selection and iteration are, and learn what they look like in Python. Students will be faced with	independently.		 Subsections and their links to other subsections
Scheme of Work:	given the tools to be confident dealing with errors, like a developer would in a real-world context.	Python Programming		Complete, write or refine an algorithm using the techniques
Scratch Programming	Seheme of Morks	Spring Term 1		Syntax/logic errors
Spring Term 1	1. <u>Mobile App</u>	Summer Term 2		Trace tables 2.2.1 Programming fundamentals
	<u>Development</u>	Key Skills and Techniques		The use of variables, constants, operators, inputs, outputs and
dentifying a sequence		BTEC Link: Component 3 Unit D		assignments. The use of:

Final Exams Paper 1 & 2

Component 3

<u>Unit D</u>

Understand how organisations use different forms of notation to explain systems, data and information.

Be able to interpret information presented using different forms of notation in a range of contexts.

Be able to present knowledge and understanding using different forms of notations.

2.1.3 Searching and sorting algorithms

- Binary Search
- Linear Search
- Bubble Sort
- Merge Sort
- Insertion Sort
- 2.3.1 Defensive design
- Anticipating misuse
- Authenticating
- Input Validation
- Maintainability with naming conventions, indents, commenting

2.3.2 Testing

- Purpose of testing
- Iterative vs final
- Syntax & logic errors
- Test data normal, boundary, erroneous
- Refining algorithms

2.5.1 Languages

- Purpose of different levels of language
- Translators
- Compiler and interpreter

Making a sequence
Identifying a variable
Using variables
Identifying selection
Using selection
Identifying loops
Using loops

BTEC Link: **Component 3 Unit D**

GCSE Link: Programming throughout the course

Direct Vocabulary

Tier 2 User Blocks Sequence Operator

Tier 3

Selection Iteration Subroutine Variable

2. Developing for the GCSE Link: Web Programming throughout the course 3. Python Programming **Direct vocabulary** 1. Spring Term 1 Tier 2 List 2. Summer Term 1 Array Integer 3. Summer Term 2 Sequence – previously learnt Tier 3 Key Skills and Techniques Variable – previously learnt Features of an app Assignment – previously learnt Basics of making an app Selection – previously learnt Using HTML Iteration – previously learnt Knowing how a search engine works Boolean Making a basic webpage String Using sequence Data type Using variables Using selection Using iteration BTEC Link: <u>Component 3 Unit D</u> GCSE Link: Programming throughout the course Direct vocabulary Tier 2 User – previously learnt Sequence - previously learnt Assignment

• Selection • Iteration 2.2.2 Data types

Sequence

Use of:

٠

- Integer •
- Real
- Boolean •
- Character and string
- Casting

2.2.3 Additional programming techniques

- String Manipulation
- File Handling Operations
- Records to store • data
- Use SQL to search for data
- Use arrays (1D, 2D)
- Functions and • procedures
- Random number • generator

2.4.1 Boolean logic

- Use AND, OR and NOT
- Truth Tables
- Combining operators

Input

Search Engine

Interpreter

Tier 3

2.5.2 The Integrated Development Environment (IDE)

- Editors
- Error diagnostics
- Run-time • environment
- Translators

Selection – previously learnt					
Iteration – previously learnt					
GUI					
Algorithms					
Syntax Error					
Logic Error					

The big idea of using software exists to make students have good knowledge of how to use programs that are fundamental. In year 7 students will learn how to use Word and excel. Our unit on word gives students knowledge of the idea of referencing sources and the concept of copyright. It will also ensure all ability students are able to complete work on word, insert pictures, and save their work without issue as these are skills that will be very valuable for students. The unit on excel introduces students to what data is, how they collect it, and how they can use word to manipulate that data. They will learn about the formulas they can find on excel and have practice using the most common ones.

Scheme of Work:
<u>Using Media</u>
<u>Spreadsheets</u>
Autumn Term 2
Summer Term 1

In year 8 students are given the opportunity to try out a piece of software called Inkscape. This unit is not about how well students can use Inkscape, but rather about students getting a taste of what graphic design on the computer is like. This introduces students to brand new software that they can be creative with and see cross-curricular links with other subjects. This unit is about students who perhaps don't enjoy coding, seeing the usefulness of computers and gaining an understanding of a possible new career.

Scheme of Work:
<u> Media - Vector</u>
<u>Graphics</u>
Autumn Term 2
Key Skills and Techniques
Making basic shapes
Manipulating shapes
Combining shapes
Building a design
RTEC Link

The big idea of using software offers students in year 9 the opportunity to make their own animation. This is something students can immediately see the application of in a real-world context, and something students feel like can get creative with. This unit will introduce students to Blendr, a widely used piece of software that is also deeply rooted in the gaming industry when making video games. They will use this to explore 3d animation, and by the end of the unit, all students will produce a 3-10 second animation of their own using this software.

Scheme of Work: Media - Animations Autumn Term 2

Key Skills and Techniques Move objects Scale objects Play, pause through animation Apply colours to different parts Proportional editing Use subdivision Use lighting Render

BIG IDEA 3: IT for Life

Component 1 Programming Aim B and C Techniques Learners will develop their understanding of what makes an

They will use this

user interface.

different project

understanding to plan,

design a user interface

Learners will investigate

planning techniques.

Teachers will provide

of a user interface.

• select appropriate

project planning tools

and methodologies to

create a project plan,

including outlining the

constraints and risks in

timescales, possible

• produce an initial

interface that meets

accessibility needs.

user, input, output and

design for a user

Learners will:

their project

learners with a brief for

design and create a

In year 10, students will learn about additional coding techniques. During effective user interface that topic, they will and how to effectively manage a project. mainly develop their coding skills. They will also be introduced

2.2.3 Additional

B Use project planning Software techniques to plan and

Students will learn how to use python IDE software and take advantage os IDE software to support writing and debugging their the design requirements code.

to the use of SQL to

search for data.

Whilst students are learning how to write algorithms, they will use flowchart software to develop algorithms towards their programming project and paper 2 exam.

They will need to be able to use the SQL commands: SELECT

Component 2

Learners will understand the characteristics of data and information and how they help organisations in

decision making. They will use data

manipulation methods to create a

dashboard to present and draw conclusions from information.

A Investigate the role and impact of using data on individuals and organisations

Learners will be given a scenario outlining the data collected in two different sectors (not the data itself). The scenario will outline the data collection methods and features.

Learners will assess:

 how the data collection method (for example primary and secondary) and the data collection features (for example sample size, who was in the sample, when and where the data

In year 11, students continue to encounter the big idea of using software, through completing their programming Project they will create design ideas with software.

They will refine their programming skills using the software used in vear 10.

Online software such as TEAMs quizzes, Isaac Computing and Seneca will support students books an textbooks to revise their previous practice in year 10. These will be key for instant feedback for students practicing before their final exams.

Key Skills and Techniques	Component 1 - students will design an		Their initial design	FROM	was collected) affect	
Inserting pictures on word	interface	BTEC Link:	should show the designs	WHERE	, the quality of the data	
Saving work on word			for at least four different		• how the quality of	
	GCSE Link		screens in their user		data affects decision	
Basic word skills			interrace.	<u>Project</u>	making across two	
Knowing what data is		GCSE Link:	C Develop and review	plannina &	different sectors (for	
Understanding data collection		N/A	a user interface.	Time	example transport,	
Presenting data on excel	<u>Direct vocabulary</u>		Learners will follow their	mne	P. Create a databaard	
Using excel functions	<u>Tier 2</u>	Direct vocabulary	pian and create a user	<u>Managemen</u>	B Create a aasnoodra	
	Fill	<u>Tier 2</u>	Lograce will then:	ł	manipulation tools	
BTEC Link:	Stroke	Object – previously learnt	obtain feedback from	■ Before their	Learners will:	
Component 2 - students will need to	Object		potential users and	programming	 select and apply 	
use excel to manipulate data, like	Pixels	Tier 3	refine the user interface	project they will	data manipulation	
they did in this unit			until it is complete	learn how to	methods to	
	Tier 3	Roy tracing	 evaluate the 	manage their 20hrs	manipulate data in	
GCSE Link:	Paths	Subdivision	strengths and	design a solution to	oraer to provide	
SQL .	Vector Graphics	SUDDIVISION	weaknesses of their user	the scenarios set by	summaries of the data	
		Keyframe		their exam board.	• produce a	
Direct vocabulary		Render	evaluate the strongths and		dashboard to display	
Tier 2			weaknesses of their	Plannina software	the summaries of data	
			project plan	such as Lucidchart.	using appropriate	
					presentation features	
File					and presentation	
Primary					C Draw a car al wiene	
Secondary					and review data	
Data – previously learnt					presentation methods.	
Referencing					l earners will use their	
Copyright					dashboard to draw	
					conclusions and make	
Tier 3					appropriate	
Spreadsheet					recommendations.	
					the presentation	
					features used in their	
Analyse					dashboard affect how	
Function					well the information is	
					understood.	
			nnutorworke			
	<u>Bi</u>	G IDEA 4. NOW Q COL	npuler works			
In year 7, students will learn about	For this big idea, year 8 students will	In year 9, students will revisit what	Component 1	1.1 Architecture of	Year 11 BTEC won't	Revision of
how computers are connected to r	recap what hardware is and then	they learned in year 8 and expand		the CPU	follow how a	Systems
each other and how they	expand further on how memory and	on those ideas. They will revisit binary	<u>Aim A</u>	• The nurnose of	computer works, but	
communicate. They will learn what a	storage work on a computer They will	I numbers and recap how to convert			L students will come	
I PACATA ACCORD AND A AND AND AND AND AND AND AND AND	learn about input and output doutes	them Then they will leave should	Learners will develop	the CPU		AICHINECIDIE

what hardware makes up a network. They will look at what wireless/wired connections are and think about how the internet is a network. Students will get the chance to learn how data travels across the internet, and learn why the internet may be at different speeds for different people. This unit gives students an introduction into how computers are working together, in a way that they can understand.

Scheme of Work:

Networks

Spring Term 2

Key Skills and Techniques

Understand what a network is Give examples of hardware Understand what the internet is Describe how data travels between computers

Describe effect of internet devices

GCSE Link Networks and topolo Wired/wireless network Protocols

Direct vocabulary

Tier 2

Wired

Wireless

Internet

as well as different storage devices the computer uses. They will start to learn how different parts of the computer interact with each other. They will learn what an operating system means, thinking about real world examples with iOS on their phones, or windows on the computer. Later in the year, they will learn about binary numbers. They will learn about the need for binary numbers and get lots of practice converting between denary numbers (1-9) and binary numbers.

Scheme of Work: Memory and Storage Binary Autumn Term 1 Sprina Term 2 Key Skills and Techniques Summer Term Identify hardware devices Differentiate between input and output Identify storage devices Identify operating systems Understand basics of how a computer works Know the use of binary Convert binary numbers **BTEC Link** Component 1 - Interfac **BTEC Link**

how binary is used with pixels to make up a picture, or how binary is used to represent sound. This will lead to how a computer can compress a text file, a picture, or sounds. Students will then revisit what they learnt about memory and storage, to be introduced to the idea of the CPU and what it does. They will recap how different parts of a computer interact and go in further depth, taking particular detail of what the CPU architecture is. All students will understand how different parts of a computer can make a computer work faster or slower. They will also be introduced to what logic gates are, and get their first practice using them.

Scheme of Work: Representations Computing Systems Spring Term 2

Key Skills and Techniques Converting binary Understanding compression Lossy vs lossless compression Recalling input vs output devices Able to explain how different parts of the computer work together

what makes an effective user interface and how to effectively manage a project. They will use this understanding to plan, design and create a user interface.

A Investigate user interface design for individuals and organisations

Learners will select and investigate two different types of user interface. They will assess how:

 effectively the user interface meets the audience's requirements, including their accessibility needs, skills level and

demographics · effectively different design principles have been used to allow both appropriate and effective user interactions with

hardware devices • techniques have been used to allow different types of users to efficiently interact with the interface

- Data storage
- Binary conversion
- Data capacity

2.4 Data Storage

Denary to binary conversion Adding binary •

systems Examples

•

2.1 Primary Storage nemory)

Common CPU

their function

Von Neumann

architecture

components and

characteristics of

the CPU affect

performance

.3 Embedded

Purpose of

embedded

•

•

2 CPL

• How

performance

- •
- RAM vs ROM

2.2 Secondar Storage

Purpose •

٠ Types

• Pros & cons of types

• Suitability for purpose

- Purpose
- ROM purpose
- RAM purpose • Virtual memory

overlapping ideas whilst learning topics featured in other big ideas.	Identify the different components/parts of the CPU and their corresponding functions.	
	To fully understand the fetch-decode-execute function within the CPU	
	Recognize the purpose of embedded systems and identify examples.	
	Recognize the purpose of embedded systems and identify examples.	
	Understanding the different issues that are caused by the use of computer systems	
	Introduction to the ethical, legal and environmental impact of computer systems	
	Understand the laws/legislation of IT and their legal effects.	
	Ability to analyse situations and identify which laws will impact on these situations.	
	Identify how stakeholders are affected by technologies	
	Examine the positive and negative implications of technology on a given profession/scenario	
	Examine the cultural implications of	

Hardware Data

<u> Tier 3</u>

Computer Networks Protocol Bandwidth Packets Addressing Connectivity

Secondary Storage Data storage

Storage device

Memory

Direct vocabulary

Tier 2 Input Output Hardware – previously learnt Software Decimal number Character – previously learnt

Tier 3

Operating System RAM ROM Artificial Intelligence Bits Bytes Binary

GCSE Link: Compression Architecture of the CP CPU performance

Direct vocabulary

Tier 2 Pixels – previously learnt Compression Architecture Hardware – previously learnt

Tier 3

Binary – previously learnt Bits – previously learnt Lossy Lossless Logic gate Denary to hexadecimal conversion
Binary to

- hexadecimal conversionBinary shifts
- Binary represent
- charactersCharacter set
- Bits
- Image is pixels
- Metadata
- Colour depth
 and resolution
- Sound is stored
- Duration and bit depth

2.5 Compression

- Purpose
- Lossy vs lossless

3.1 Networks and topologies

- LAN vs WAN
- Performance
 factors
- Client-server vs
 peer-to-peer
- Hardware
 needed
- Internet
- Star and mesh
 topologies

3.2 Wired and

wireless networks, protocols and layers

- Wired vs wireless
- Encryption
- IP vs MAC
- addressing
- Standards
- Common
 protocols

•

Computer Science technologies

Explore the different cultural issues on Computer Science technologies

Examine the environmental impact of Computer Science

Explore key environmental issues related to Computer Science

		Concept of layers	