#### Suggested websites: TL Maths and Maths Watch

If  $f(x) = ax^n$  then  $f'(x) = nax^{n-1}$ 

If y = f(x) then  $\frac{dy}{dx} = f'(x)$ Key point



#### **Unit 6: Differentiation** (PURE)

- 6a. Definition, differentiating polynomials, second derivatives
- 6b. Gradients, tangents, normals, maxima and minima

#### **Key Vocabulary**

Differentiation, derivative, first principles, rate of change, rational, constant, tangent, normal, increasing, decreasing, stationary point, maximum, minimum, integer, calculus, function, parallel, perpendicular.



#### **Differentiation** 1 You can differentiate a function to find its derivative or gradient function. The derivative is written as f'(x) or $\frac{dy}{dx}$ Differentiating $x^n$ Golden rules Write every term in a polynomial in y = f(x) $y = x^n$ the form ax" before differentiating. Multiply by Differentiation $\sqrt{x} \rightarrow x^{\frac{1}{2}} \qquad \frac{6}{x^2} \rightarrow 6x^{-2}$ the power ... Constant terms differentiate to $\frac{dy}{dx} = nx^{n-1} \dots \text{ then reduce}$ the power by 1 zero, and x terms differentiate to $\frac{dy}{dx} = f'(x)$ a constant. $f(x) = 3x + 1 \rightarrow f'(x) = 3$ $f(x) = 7 \rightarrow f'(x) = 0$ This rule works for any value of n, including

# **Differentiation 2**

x = 2

 $\frac{dy}{dx} = 3(2)^2 + 10(2) = 12 + 20 = 32$ 

You can use the derivative or gradient function to find the rate of change of a function, or the gradient of a curve.

This curve has equation  $y = x^3 + 5x^2$ . Its gradient function has equation  $\frac{dy}{dx} = 3x^2 + 10x$ . You can find the gradient at any point on the graph by substituting the x-coordinate at that point into the gradient function.



## Evaluating f'(x)

f'(x) tells you the rate of change of the function for a given value of x. You can calculate f'(x) for a given value of x by substituting that value of x into the derivative.



Suggested websites: TL Maths and Maths Watch

Integrating x" with respect to x is written as  $\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$ 





Key point

**Unit 5a: Statistical hypothesis** testing (Stats)

5a. Language of hypothesis testing; Significance levels

#### **Key Vocabulary**

. Hypotheses, significance level, onetailed test, two-tailed test, test statistic, null hypothesis, alternative hypothesis, critical value, critical region, acceptance region, p-value, binomial model, accept, reject, sample, inference.

# Actual significance level

2 probability that the sometimes called the actual significance he actual probability that the observed alue will fall within the critical region is incorrectly. rejected is also the p .0 **ypothesis** evel. This I

#### Suggested websites: TL Maths and Maths Watch

The null hypothesis, Ho, is a statistical statement representing your basic assumption.



a

Sed

eg.

T

0

×n

AR

Ho:

C B(12

C.

Be

μ

T

0

35

P,

=

#### Key point Key point The **alternative hypothesis**, H<sub>1</sub>, is a statement that contradicts the null hypothesis. **Hypothesis** testing AA 20 You need to be able to carry out a hypothesis test for the probability, p, in a binomial distribution. 0 Follow these steps to carry out a hypothesis test. Compare this probability with Assume Ho is true and Model the test statistic a given significance level and calculate the probability of and define null (Ho) write a conclusion stating the observed value and alternative (H,) whether Ho is accepted or (or a greater / lesser value) hypotheses. rejected. occurring How many tails? Worked example N (V) If you want to test whether p is likely to ū be greater than or less than a particular 14 15 A microchip manufacturer knows that 9% value you need to use a of the microchips produced using a certain one-tailed test. For example: process contain defects. The manufacturer $H_0: p = 0.4, H_1: p > 0.4$ trials a new manufacturing process. A sample Divide should P(X ≥ of 50 chips from the new process are selected If you want to test whether p is likely to be and 2 of them are observed to be faulty. different from a particular value, you need 0 00 Test, at the 10% significance level, whether to use a two-tailed test. For example: R 0.025 there is evidence that the proportion of faulty $H_0: p = 0.75, H_1: p \neq 0.75$ chips has reduced under the new process. 0 State your hypotheses clearly. (6 marks) Problem solved! Let X = the number of faulty chips in a N 30 Co. sample of 50. Then $X \sim B(50, p)$ . 150 4 NO $H_0: p = 0.09, H_1: p < 0.09$ You want to test whether the proportion has 2 = 0 reduced so this is a one-tailed test. Assume Ho is true, so X ~ B(50, 0.09). กัด 5 V You can use your calculator to find $P(X \le 2)$ $P(X \le 2) = 0.1605...$ 0 00 directly. Since the probability of this 16% > 10% so there is not enough Ó observation (or worse) is greater than 10% you evidence to reject Ho. ð do not reject Ho. = The proportion of faulty chips has not N significantly reduced under the new You will need to use problem-solving skills process. throughout your exam - be prepared!

Suggested websites: TL Maths and Maths Watch

Key point If a resultant force **F**N acts on an object of mass m kg giving it an acceleration **a** m s<sup>-2</sup> then **F** = ma

FATCAC

If forces  $F_1, F_2, \dots, F_n$  act on an object then the resultant force is  $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 + \dots \mathbf{F}_n$ 

18000N



giving it an acceleration a m s<sup>-2</sup> then F =

ma

If a resultant force FN acts on an object of mass m kg

Key point

**Example 1** 

#### Unit 8b: Forces & Newton's laws (Mechanics)

8b. Newton's second law, (no resolving forces or use of F = μR); Newton's third law: equilibrium, smooth pulley problems

#### **Key Vocabulary**

Force, newtons, mass, weight, gravity, tension, thrust, compression, air resistance, reaction, driving force, braking force, resultant, force diagram, equilibrium, inextensible, light, negligible, particle, smooth, uniform, pulley, string, retardation, free particle.

#### Examples of forces include:

Kicking a ball with a force of magnitude 200 N in the easterly direction.

A force  $\mathbf{F} = (3\mathbf{i} + 4\mathbf{j})\mathbf{N}$ acting on a particle.

| F = ma                                                                                              | Bornitant form                                  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| F = ma is sometimes called the equation of                                                          | If there is more than o                         |
| <b>motion</b> . In words it is:<br>force (N) = mass (kg) $\times$ acceleration (m s <sup>-2</sup> ) | a particle you can find<br>any given direction. |
| You need to remember $F = ma$ . It is not in the formulae booklet.                                  | 18 000                                          |
| This 4 kg block is resting on a smooth $5ms^2$                                                      | 1                                               |
| surface. If it is acted $4 \text{ kg} \longrightarrow 20 \text{ N}$                                 | 1000 N +                                        |
| 20N it will accelerate $777777777777777777777777777777777777$                                       | 1                                               |
|                                                                                                     | 18 000                                          |

To solve questions involving acceleration

Strategy

- Draw a clear diagram, marking on all the forces which act on the object and the acceleration. 1)
- (2) Use F = ma to write an equation of motion where F is the sum of the components of all the forces in the direction of a.

Solve the equation to calculate the unknown force.

