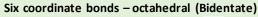
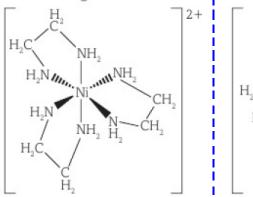

## Ch 24 Transition Metals

*<u>Spec Reference:</u>* 5.3.1 Transition elements, 5.3.2 Qualitative Analysis


# **Key Vocabulary**


| Transition<br>elements | A d-block element that has an incomplete d-sub-shell as a stable ion.                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Complex ion            | A transition metal metal ion bonded to one or more ligands by <b>coordinate bonds</b> (dative covalent bonds)      |
| Ligand                 | A ligand is a molecule or ion that donates a pair of electrons to the central metal ion to form a coordinate bond. |
| Coordination<br>number | The total number of coordinate bonds formed between a central metal ion and its ligands                            |
| Stereoisomer           | Species with the same structural formula but with a different arrangement of the atoms in space.                   |
|                        |                                                                                                                    |

#### Stereoisomerism – cis/trans isomerism



## Stereoisomerism - Optical isomerism





| tate)                                                                   |                                              |
|-------------------------------------------------------------------------|----------------------------------------------|
| $\begin{bmatrix} H_2N \\ H_2C \\ H_2C \\ H_2C \\ H_2H_2N \end{bmatrix}$ | H2<br>CH2<br>NH2<br>NH2<br>CH2<br>CH2<br>CH2 |

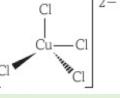
| Prope     | rti | <u>es Part 1</u>                                                                                                |                                       |                         |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|
| Element   | z   | Electron configuration                                                                                          | Noble gas configuration               | Electron in box diagram |
| Scandium  | 21  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d¹                                                             | [Ar] 4s <sup>2</sup> 3d <sup>1</sup>  |                         |
| Titanium  | 22  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d²                                                             | [Ar] 4s <sup>2</sup> 3d <sup>2</sup>  |                         |
| Vanadium  | 23  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d³                                                             | [Ar] 4s <sup>2</sup> 3d <sup>3</sup>  |                         |
| Chromium  | 24  | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>1</sup> 3d <sup>5</sup> | [Ar] 4s <sup>1</sup> 3d <sup>5</sup>  |                         |
| Manganese | 25  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d <sup>5</sup>                                                 | [Ar] 4s <sup>2</sup> 3d <sup>5</sup>  |                         |
| Iron      | 26  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d <sup>6</sup>                                                 | [Ar] 4s <sup>2</sup> 3d <sup>6</sup>  |                         |
| Cobalt    | 27  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d <sup>7</sup>                                                 | [Ar] 4s <sup>2</sup> 3d <sup>7</sup>  |                         |
| Nickel    | 28  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d <sup>8</sup>                                                 | [Ar] 4s <sup>2</sup> 3d <sup>8</sup>  |                         |
| Copper    | 29  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s¹ 3d¹ <sup>0</sup>                                                | [Ar] 4s <sup>1</sup> 3d <sup>10</sup> |                         |
| Zinc      | 30  | 1s² 2s² 2p <sup>6</sup> 3s² 3p <sup>6</sup> 4s² 3d <sup>10</sup>                                                | [Ar] 4s <sup>2</sup> 3d <sup>10</sup> |                         |

Figure 3 Electron configurations for the d-block elements of Period 4.

- Scandium and Zinc are not considered to be transition metals. Scandium forms only a 3+ ion [Ar] 4s<sup>0</sup> 3d<sup>0</sup>
- Zinc forms only a 2+ ion [Ar]  $4s^0 3d^{10}$
- Copper is a transition metal because its +2 ion has an incomplete d orbital. [Ar] 4s<sup>0</sup> 3d<sup>9</sup>

#### <u>Common ligands</u> <u>Monodentate Ligands</u>

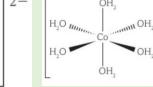
|             |                  | Charge                |
|-------------|------------------|-----------------------|
| Water       | :OH <sub>2</sub> | None – neutral ligand |
| Ammonia     | :NH <sub>3</sub> | None – neutral ligand |
| Thiocyanate | :SCN-            | -1                    |
| Cyanide     | :CN-             | -1                    |
| Chloride    | :Cl-             | -1                    |
| Hydroxide   | :OH-             | -1                    |

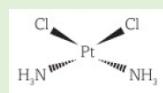

## Properties Part 2

- **Physical:** lustrous, high density, high melting/boiling points, conductors
- Variable Oxidation States: Transition metals can have different oxidation states. This makes them useful catalysts.



#### Catalytic Behaviour:


- Catalysts reduce energy usage. Many transition metals are toxic. Transition metals provide a surface on which the reaction can take place.
- Transition metals have the ability to change their oxidation states by gaining or losing electrons.
- Examples:
  - iron metal in Haber process,
  - vanadium (V) oxide in the contact process
  - nickel metal in hydrogenation of alkenes
  - $\mathsf{MnO}_2$  catalyses decomposition of  $\mathsf{H}_2\mathsf{O}_2.$




yellow [CuCl<sub>4</sub>]<sup>2-</sup>

tetrahedral

Shapes





blue [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> octahedral



\*cis-platin is used as an anti-cancer drug because it binds to DNA preventing cell division

| Starks                 | L                     | igand Su                                                     | ıbstitutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ligand substutions – mu<br>Reaction copper sulfate (aq) v                                                                                                                                                                                                             |                                                          | ations and colours!                                                                                                                   | <ul> <li>Haemoglobin</li> <li>Haemoglobin is the molecule that causes blood to appear red.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ligand<br>substitution |                       | on occurs when<br>type of ligand                             | n a ligand in a complex ion is replaced by molecule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> + 4NH <sub>3</sub><br>pale blue solution                                                                                                                                                                           | → [Cu(Nł                                                 | H <sub>3</sub> ) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] <sup>2+</sup> + 4H <sub>2</sub> O<br>ue solution                      | <ul> <li>It carries oxygen from the lungs to cells in the body.</li> <li>Haemoglobin contains an Fe<sup>2+</sup> ion. One coordination site is left that can bind loosely to an oxygen molecule.</li> </ul>                                                                                                                                                                                                                                                                    |
|                        |                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} \textit{Reaction of copper sulfate (aquation (Cu(H_2O)_6]^{2+} + 4Cl^{-} \\ \textit{pale blue solute} \end{array} \\ \\ \textit{Reaction of chromium (III) (aquation (Cr(H_2O)_6]^{3+} + 6NH_3 \\ \textit{violet solution} \end{array} \end{array}$ | → [CuC<br>yellow so                                      | l <sub>4</sub> ] <sup>2-</sup> + 6H <sub>2</sub> O<br>blution<br>,<br><sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup> + 6H <sub>2</sub> O | <ul> <li>Oxygen is a poor ligand that is easily released to cells, where its concentration is low.</li> <li>Ligands that can form stronger bonds with the Fe<sup>2+</sup> ion, such as carbon monoxide, bind irreversibly and destroy haemoglobin's ability to carry oxygen. These substances are toxic.</li> <li>Carbon monoxide (CO) will undergo a ligand substitution reaction with oxygen (O<sub>2</sub>) because it forms stronger coordinate covalent bonds.</li> </ul> |
| lon                    | Colour of<br>ion (aq) | Colour with<br>small amount<br>of NH <sub>3</sub> or<br>NaOH | Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       | Colour with<br>excess NH3 or<br>excess OH (aq)           | Equation                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cu <sup>2+</sup>       | Paleblue              | Paleblue<br>ppt                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(H_2O)_4]_{(5)} + 2NH_4^+$<br>$(H)_2(H_2O)_4]_{(5)} + 2H_2O_{(1)}$                                                                                                                                                                                                   | NH <sub>3</sub><br>deep blue<br>solution<br>(royal blue) |                                                                                                                                       | $\rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2OH-$ $ _{3(aq)} \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+}_{(aq)} + 2H_2O_{(1)} + 2OH^{-}$                                                                                                                                                                                                                                                                                                                                                |
| Fe <sup>2+</sup>       | pale<br>green         | green ppt                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(H_2O)_4]_{(s)} + 2H_2O_{(l)}$<br>$(2O)_4]_{(s)} + 2NH_4^+_{(aq)}$                                                                                                                                                                                                   |                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fe <sup>3+</sup>       | pale<br>yellow        | rusty<br>brown ppt                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O) <sub>3</sub> ] <sub>(s)</sub> +3H <sub>2</sub> O <sub>(l)</sub><br><sub>3</sub> (H <sub>2</sub> O) <sub>3</sub> ] <sub>(s)</sub> +3NH <sub>4</sub> + <sub>(aq)</sub>                                                                                               |                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mn <sup>2+</sup>       | Palepink              | pale<br>brown ppt                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (s)<br>$H_2O_4]_{(s)} + 2H_2O_{(1)}$<br>$H_2(H_2O)_4]_{(s)} + 2NH_4^+_{(aq)}$                                                                                                                                                                                         |                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cr <sup>3+</sup>       | violet                | Purpleppt                                                    | $\operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{3OH}^{-}(\operatorname{aq}) \rightarrow \operatorname{Cr}(\operatorname{OH})_3(\operatorname{s})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       | OH <sup>-</sup><br>green                                 | Cr(OH) <sub>3</sub> (s) + 3OH <sup>-</sup> (aq)                                                                                       | $\rightarrow$ [Cr(OH) <sub>6</sub> ] <sup>3-</sup> (aq)                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                       |                                                              | $ [Cr(H_2O)_6]^{3+}_{(aq)} + 3OH^{-}_{(aq)} \rightarrow [Cr(OH)_3(H_2O)_6]^{3+}_{(aq)} + 3NH_3_{(aq)} + 3NH_3_{$ | $_{2}O_{3}]_{(s)} + 3H_{2}O_{(l)}$<br>$_{2}O_{3}]_{(s)} + 3NH_{4}^{+}_{(aq)}$                                                                                                                                                                                         | solution <b>NH</b> <sub>3</sub>                          |                                                                                                                                       | $ \begin{array}{rcl} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array}  & \left[ Cr(OH^{-})_{6} \right]^{3-}_{(aq)} + 3H_{2}O_{(l)} + 3OH^{-}_{(aq)} \\ & & & \\ & & \\ & & & \\ \end{array} \right]^{-} \\ \begin{array}{rcl} & & \\ & & \\ \end{array} $                                                                                                                                                                              |
|                        |                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       | Purple<br>solution                                       |                                                                                                                                       | $ → [Cr(OH)_3(H_2O)_3]_{(s)} + 3NH_4^+_{(aq)} $ $  _{3(aq)} → [Cr(NH_3)_6]^{3+}_{(aq)} + 3H_2O_{(1)} + 3OH^{(aq)} $                                                                                                                                                                                                                                                                                                                                                            |

### **Qualitative Analysis**

| lon              | Test                                                                     | Observation                                                           | Ionic Equation                                                                    |
|------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| CO32-            | Nitric acid test<br>Add nitric acid                                      | Bubbles of CO <sub>2</sub>                                            | $CO_3^{2-}$ + H <sup>+</sup> $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub> (g) |
| SO42-            | Barium test*<br>Add barium nitrate                                       | White ppte                                                            | $SO_4^{2-}$ + $Ba^{2+} \rightarrow BaSO_4(s)$                                     |
| Cl-, Br-, I-     | Silver nitrate test**<br>Add silver nitrate                              | White ppte – chloride<br>Cream ppte - bromide<br>Yellow ppte - iodide | Ag⁺ (aq) + X⁻ (aq) → AgX (s)                                                      |
| NH4 <sup>+</sup> | Add NaOH and gently heat with litmus paper at the mouth of the test tube | Litmus paper turns blue<br>The ammonia gas produced is alkali         | $NH_4^+ + OH^- \rightarrow NH_3(g) + H_2O$                                        |

\*barium nitrate will make a ppte with  $CO_3^{2-}$  so the carbonate test is performed first. Nitric acid is added until there is no more carbonate. \*\*silver nitrate will make a ppte with  $CO_3^{2-}$  so the carbonate test is performed first. Nitric acid is added until there is no more carbonate.

#### **Qualitative Analysis**

The equations you need to to know are the same as the ligand substitution reactions on the previous slide.

| Name              | Compound before addition                                                 | With NH <sub>3</sub> (aq) or<br>OH <sup>-</sup> (aq)                                                                                                                        | Excess NH <sub>3</sub> (aq)                                                                                                                                                                           | Excess OH <sup>-</sup> (aq)                                                                                                                                                                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper(II) ion    | Blue solution                                                            | Blue precipitate                                                                                                                                                            | Precipitate re-dissolves to give a blue solution                                                                                                                                                      | No change                                                                                                                                                                                                                                                                                                                                                              |
| Iron(II) ion      | Green solution                                                           | Green precipitate                                                                                                                                                           | No change                                                                                                                                                                                             | No change                                                                                                                                                                                                                                                                                                                                                              |
| Manganese(II) ion | Pink solution                                                            | Brown precipitate                                                                                                                                                           | No change                                                                                                                                                                                             | No change                                                                                                                                                                                                                                                                                                                                                              |
| Chromium(III) ion | Violet solution                                                          | Green precipitate                                                                                                                                                           | Precipitate dissolves to give a purple solution                                                                                                                                                       | Precipitate dissolves to give a green solution                                                                                                                                                                                                                                                                                                                         |
| Iron(III) ion     | Yellow/brown solution                                                    | Brown precipitate                                                                                                                                                           | No change                                                                                                                                                                                             | No change                                                                                                                                                                                                                                                                                                                                                              |
|                   | Copper(II) ion<br>Iron(II) ion<br>Manganese(II) ion<br>Chromium(III) ion | addition       Copper(II) ion     Blue solution       Iron(II) ion     Green solution       Manganese(II) ion     Pink solution       Chromium(III) ion     Violet solution | additionOH (aq)Copper(II) ionBlue solutionBlue precipitateIron(II) ionGreen solutionGreen precipitateManganese(II) ionPink solutionBrown precipitateChromium(III) ionViolet solutionGreen precipitate | additionOH-(aq)Copper(II) ionBlue solutionBlue precipitate<br>give a blue solutionIron(II) ionGreen solutionGreen precipitate<br>Brown precipitateNo changeManganese(II) ionPink solutionBrown precipitate<br>give a blue solutionNo changeChromium(III) ionViolet solutionGreen precipitate<br>give a blue solutionPrecipitate dissolves to give a<br>purple solution |

| Halide Tests   |          |                             |                                                              |  |
|----------------|----------|-----------------------------|--------------------------------------------------------------|--|
| Halide<br>ion  | Name     | With AgNO <sub>3</sub> (aq) | Solubility of precipitate formed                             |  |
| Cl-            | Chloride | White precipitate           | Soluble in dilute<br>NH <sub>3</sub> (aq)                    |  |
| Br-            | Bromide  | Cream precipitate           | Soluble in concen-<br>trated NH <sub>3</sub> (aq) only       |  |
| I <sup>-</sup> | Iodide   | Yellow precipitate          | Insoluble in dilute and<br>concentrated NH <sub>3</sub> (aq) |  |

#### Interconversions between Fe(II) and Fe(III)

#### Iron (II) reacts with H<sup>+</sup>/MnO<sub>4</sub>

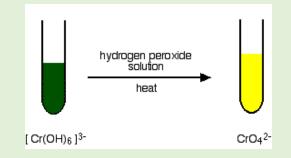
 $MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5Fe^{2+}_{(aq)} \rightarrow Mn^{2+}_{(aq)} + 5Fe^{3+}_{(aq)} + 4H_2O_{(1)}$ 

- Manganese is reduced since the oxidation number decreases from +7 in  $MnO_4^-$  to +2 in  $Mn^{2+}$
- Iron is oxidised since the oxidation number increases from +2 in  $Fe^{2+}$  to +3 in  $Fe^{3+}$
- The colour change is purple to pale pink.

#### Iron (III) reacts with I

 $2Fe^{3+}_{(aq)}$  +  $2I^{-}_{(aq)}$   $\rightarrow$   $2Fe^{2+}_{(aq)}$  +  $I_{2(aq/s)}$ rusty brown solution

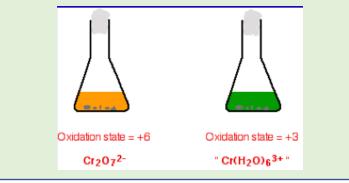
green solution brown solution


- Fe<sup>3+</sup> is sufficient in oxidising power to oxidise an iodide ion to iodine, so Fel<sub>2</sub> is formed, not Fel<sub>3</sub>.
- In the presence of  $I^-$  Fe<sup>3+</sup> can be reduced to Fe<sup>2+</sup>. The overriding colour change is rusty brown to dark brown

#### Interconversions between Cr(III) and Cr(VI)

#### Chromium (III) reacts with H<sub>2</sub>O<sub>2</sub>/OH

 $2Cr^{3+}_{(aq)} + 3H_2O_{2(||} + 100H^{-}_{(aq)} \rightarrow 2CrO_4^{2-}_{(aq)} + 8H_2O_{(||)}$ 

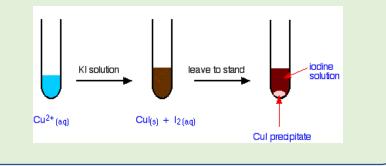

- Oxygen is reduced since the oxidation number decreases from -1 in  $H_2O_2$  to -2 in CrO<sub>4</sub><sup>2-</sup>
- Chromium is oxidised since the oxidation number increases from +3 in  $Cr^{3+}$  to +6 in  $CrO_4^{2-}$
- When heated in the presence of  $H_2O_2/OH^2$  Cr<sup>3+</sup> can be oxidised to Cr<sup>6+</sup>. The colour change is green to yellow. (alkali conditions)



#### Chromium (VI) reacts with Zn/H<sup>+</sup>

#### $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3Zn_{(s)} \rightarrow 2Cr^{3+}(aq) + 3Zn^{2+} + 7H_2O_{(l)}$

- Dichromate(VI) ions  $(Cr_2O_7^{2-})$  can be reduced to chromium(III) ions using zinc and either sulphuric acid or hydrochloric acid.
- In the presence of  $Zn/H^+$   $Cr_2O_7^{2-}$  can be reduced to  $Cr^{3+}$ . The colour change is orange to green. (acidic conditions)




### Reduction of Cu(II) to Cu(I)

#### Copper (II) reacts with t

 $2Cu^{2+}_{(aq)}$  +  $4I^{-}$   $\rightarrow$   $2Cul_{(s)}$  + 2 (aq) blue solution off-white solid brown solution

- Cu<sup>2+</sup> can be reduced to Cu<sup>+</sup> with I<sup>-</sup>
- The colour change is a **blue solution** to a white **precipitate** (Cul(s)) and a dark brown solution  $(I_2)$ .



## Disproportionation of Cu(I) to Cu and Cu(II)

#### Copper (I) reacts with

$$\begin{array}{ccc} 2Cu^+{}_{(aq)} & \rightarrow & Cu_{(s)} + & Cu^{2+}{}_{(aq)} \\ colourless & brown solid & blue solution \end{array}$$

• In the aqueous conditions Cu<sup>+</sup>readily disproportionates to Cu(s) and Cu<sup>2+</sup>. The colour change is colourless to brown ppt (Cu) and blue solution (Cu<sup>2+</sup>)