Year 8 Knowledge Organisers

Block: Spring 1
Algebraic techniques

- Brackets, Equations & Inequalities
- Sequences
- Indices

YFAR 8 - ALGEBRAIC TECHNIQUES.

Brackets, Equations & Inequalities

What do I need to be able to do?

By the end of this unit you should be able to:

- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

Keywords

Simplifu: grouping and combining similar terms

Substitute: replace a variable with a numerical value

Equivalent: something of equal value

Coefficient: a number used to multiply a variable

Product: multiply terms

Highest Common Factor (HCF): the biggest factor (or number that multiplies to give a term) Inequality: an inequality compares who values showing if one is greater than, less than or

Form expressions

For unknown variables, a letter is normally used in its place

More than — **aDD**

Less than/ difference - SUBTROCT

eg 4 more than t -8 less than k .

Only similar terms can be arouped together

eg Find the perimeter of this shape. (Penmeter = length around outside of shape)

→ 6t + 2 2t + 1

$$a^2 = a \times a = -5 \times -5 = 25$$

Multiply single brackets

6x + 12

3 (2x + 4)

2x + 4			2x + 4			2x + 4		
X	Х	4	Χ	X	4	X	Х	4
			6	(+ L	2			

Different representations of 3(2x+4) = 6x + 12

Factorise into a single bracket

The two values multiply together (also the area) of the rectangle

 $8x + 4 \equiv 4(2x + 1)$

 $8x + 4 \equiv 2(4x + 2)$

This is factorised but the HCE has not been used

Solve equations with brackets

3(2x + 4) = 30

Simple Inequalities

< less than

≤ Less than or

eaual to

> More than

> More than or

equal to

x < 10Sau this out loud "x is a value less than 10"

x<10 and 10>x represent the same values

10 > xSay this out loud 10 is more than the value"

 $x + 2 \le 20$

"my value + 2 is less than or equal to 20"

x ≤ 18

The biggest the value can be is 18

Form and solve inequalities

Find the possible range of values

Check

This would suggest any value bigger than 3 satisfies the statement

3x3+2=111

10 x 3 + 2 = 32 ✓

Algebraic constructs

Expression

a sentence with a minimum of two numbers and one maths operation

Equation

a statement that two things are equal

a single number or variable

Identitu

On equation where both sides have variables that cause the same answer includes ≡

a rule written with all mathematical symbols leg area of a rectangle $0 = b \times h$

YEAR 8 - ALGEBRAIC TECHNIQUES.

Sequences

What do I need to be able

to do?

By the end of this unit you should be able to:

- Generate a sequence from term to term or position to term rules
- Recognise arithmetic sequences and find the nth term
- Recognise geometric sequences and other sequences that arise

Keywords

Sequence: items or numbers put in a pre-decided order

Term: a single number or variable

Position: the place something is located

Linear: the difference between terms increases or decreases (+ or -) by a constant value each time

Non-inear: the difference between terms increases or decreases in different amounts, or by x or ÷

Difference: the gap between two terms

Orithmetic: a sequence where the difference between the terms is constant

Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time Non-Inear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci

- Do not plot as straight lines when modelled araphically
- The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this tupe of sequence

2

Each term is the sum of the previous two terms

Sequences from algebraic rules This is substitution!

3n + 7

 $3n^2 + 7$

This will be linear - note the single power of n The values increase at a constant rate

This is not linear as there is a power for n

 $2n-5 \longrightarrow$

Substitute the number of the term you are looking for in place of 'n'

 $||\mathbf{x}|| = 2(1) - 5 = -3$

2nd term = 2 (2) - 5 = -1

100th term = 2 (100) - 5 = 195

Checking for a term in a sequence Form an equation

Is 201 in the sequence 3n - 47

01gebraic rule → 3n — 4 = 201

Solving this will find the position of the term in the sequence 1 ONLY an integer solution can be in the sequence 1

Sequence in a table and araphicallu

Position: the place in the sequence

"The term in position 3 has 7 squares

Term: the number or variable (the number of squares in each image)

In a table

Because the terms increase by the same addition each time this is **inear** — as seen in the graph

Complex alaebraic rules

Misconceptions and comparisons

2n2

(2n)2

2 tymes whatever n squared is

2 times in then square the answer

1st term = 2 x 12 = 2 2st term = 2 x 22 = 8 100^{th} term = 2×100^{2} = 2000

st term = (2 x 1)2 = 4 2st term = (2 x 2)2 = 16 100^{th} term = $(2 \times 100)^2 = 40000$

term = 1(1+5) = 6 2^{st} term = 2(2+5) = 14 100^{th} term = 100(100 + 5) = 10500

You don't need to expand the

Finding the algebraic rule

times table

This is the 4 \rightarrow 4. 8. 12. 16. 20...

4n

· 7. 11, 15, 19, 22 ←

This has the same constant difference — but is 3 more than the original sequence

4n + 3

This is the constant difference between the terms in the sequence

This is the comparison (difference) between the original and new sequence

YEAR 8 - ALGEBRAIC TECHNIQUES ...

Indices

the powers

What do I need to be able to do?

By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keywords

Base: The number that gets multiplied by a power

Power: The exponent — or the number that tells you how many times to use the number in multiplication

Exponent: The power — or the number that tells you how many times to use the number in multiplication

Indices: The power or the exponent

Coefficient: The number used to multiply a variable

 $\equiv 6b^6$

Simplify: To reduce a power to its lowest term

Product: Multiply

Oddition/Subtraction with indices Coefficient Each square 000 represents x^2 and each cube Term Term represents x4 Expression Only similar terms can be simplified If they have different powers, they are unlike terms $5x^2 + 2x^2 \longrightarrow$

Multiply expressions with indices 4b x 3a 5tx9t $\equiv 4 \times b \times 3 \times a$ $\equiv 5 \times t \times 9 \times t$ $\equiv 4 \times 3 \times 6 \times 6$ $\equiv 5 \times 9 \times t \times t$ $\equiv 12ab$ $\equiv 45 t^2$ $2b^4 \times 3b^2$ There are often $\equiv 2xbxbxbxbx3xbxb$ misconceptions with this calculation but break down

 $a^m \div a^n = a^{m-n}$