Year 10 Knowledge Organisers

Block: Spring 1 Geometry

- Angles and bearings
- Working with circles
- Vectors

YFAR 10 - GEOMETRY...

Ongles and bearings

What do I need to be able to do?

By the end of this unit you should be able

- Understand and represent bearings
- Measure and read bearings
- Make scale drawings using bearings
- Calculate bearings using angle rules
- Solve bearings problems using Puthagoras and trigonometry

Keywords

Cardinal directions: the directions of North, South, East, West

Onale: the amount of turn between two lines around their common point

Bearing: the angle in degrees measured clockwise from North

Perpendicular: where two lines meet at 90°

Parallel: straight lines always the same distance apart and never touch. They have the same gradient

Clockwise: moving in the direction of the hands on a clock

Construct: to draw accurately using a compass, protractor and or ruler or straight edge.

Scale: the ratio of the length of a drawing to the length of the real thing

Protractor: an instrument used in measuring or drawing angles

Measure anales to 180°

Read from 0° on the base line Remember to use estimation This is an obtuse anale. so between 90° and 180 °

Make sure the cross is at the point the two lines meet

Draw angles up to 180° 🔞

Make sure the cross is at the end of the line (where you want the

angle)

Draw a 35° angle

The anale

angle notation

The letter in the middle is the anale The arc represents the part of the angle

Ongle Notation: three letters ABC This is the angle at

∠**ABC** is also used to represent the angle at B

<u>Understand and represent bearinas</u>

- a bearing is always measured from NORTH It is always given as three
 - figures

The bearing of B from Q is calculated by measuring the highlighted angle

Using estimation it is clear this angle is between 090° and 180°

The angle indicated starts from the North line at Q and joins the path connecting 0 to B

This angle shows the bearing of B from A

The sentence... Bearing of from really important in identifying the bearing being

represented

11

11

Scale drawings 🔞

1:20

For every 1cm on the model there are 20cm in real life

Remember: Scale drawings ONLY change lengths and distances. Ongles remain the same

Directions

Onti-Clockwise

Measure and read bearings

The bearing of the cow to the barn

This angle is measured from NORTH It is measured in a clockwise direction

Estimation indicates this angle is between 180° and 270° Use a protractor to measure accurately Remember bearings are written as three figures

The auxiliary line is drawn to help you measure and draw the angle that is measured to represent the bearing

Scale drawings using bearings

Remember - angles DO NOT change size in scaled drawings

The bearing measurements do not change from "real life"

The scale may need to be calculated from the image This represents 30km from P to Q

6cm = 30km 6:3.000.000

The units in the ratio

scale, are, the same.

Bearings with angle rules

Theu form correspondina anales and therefore are the

same size

They form co-interior angles and add up to 1809

They form alternate angles and therefore are the same size

Bearinas with right-angled geometry

a plane flies East for 20km then turns South for 15km Find the bearing of the plane from where it took off

Use $tan^{-1}(\frac{15}{20})$ to calculate this angle

YEAR 10 - GEOMETRY ...

Working with circles

What do I need to be able to do?

By the end of this unit you should be able to:

- Recognise and label parts of a circle
- Calculate fractional parts of a circle
- · Calculate the length of an arc
- Calculate the area of a sector
- Understand and use volume of a cone, cylinder and sphere
- Understand and use surface area of a cone, culinder and sphere

<u>Keywords</u>

Circumference: the length around the outside of the circle — the perimeter

Orea: the size of the 2D surface

Diameter: the distance from one side of a circle to another through the centre

Radius: the distance from the centre to the circumference of the circle

Tangent: a straight line that touches the circumference of a circle

Chord: a line segment connecting two points on the curve

Frustrum: a pyramid or cone with the top cut off

Hemisphere: half a sphere

Surface area: the total area of the surface of a 3D shape

This includes the arc length and the radii that encloses the shape

YEAR 10 - GEOMETRY...

Vectors

What do I need to be able to do?

By the end of this unit you should be able

- Understand and represent vectors
- Use and read vector notation
- Draw and understand vectors multiplied by a scalar
- Draw and understand addition of vectors
- Draw and understand addition and subtraction of vectors

Keywords

Direction: the line our course something is going

Maanitude: the magnitude of a vector is its length

Scalar: a single number used to represent the multiplier when working with vectors

Column vector: a matrix of one column describing the movement from a point

Resultant: the vector that is the sum of two or more other vectors

Parallel: straight lines that never meet

Understand and represent vectors

Column vectors have been seen in translations to describe the movement of one image onto another

Vectors show both direction and magnitude

The arrow is pointing in the direction from starting point to end point of the vector The direction is important to correctly write the vector

The magnitude is the length of the vector (This is calculated using Pythagoras theorem and forming a right-angled triangle with auxiliary lines)

The magnitude stays the same even if the direction changes

Understand and represent vectors

Vector notation \overrightarrow{DE} is another way to represent the vector joining the point D to the point E

$$\overrightarrow{DE} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$

The arrow also indicates the direction from point D to point E.

Vectors can also be written in bold lower case so **g** represents the vector

 $g = \binom{1}{2}$

Vectors multiplied by a scalar

==============

Parallel vectors are scalar multiples of each other

$$b = 2 \times c = 2c$$

Multiply c by 2 this becomes b. The two lines are parallel

$$a = -1 \times c = -c$$

The vectors \boldsymbol{a} and \boldsymbol{c} are also parallel 0 negative scalar causes the vector to reverse direction

$$b = -2 \times a = -2a$$

<u>**Oddition of vectors**</u>

 $\overrightarrow{BC} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$

$$\overrightarrow{AB} + \overrightarrow{BC}$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$= {3+2 \choose 1+-4}$$

$$\overrightarrow{AC} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

Look how this addition compares to the vector \overrightarrow{AC}

The resultant
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

Oddition and subtraction of vectors

 $a = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ $b = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$

$$\boldsymbol{a} + (-\boldsymbol{b}) = \begin{pmatrix} 5 + -0 \\ 1 + -4 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$$

The resultant is ${m a}-{m b}$ because the vector is in the opposite direction to b which needs a scalar of -1