Knowledge Organiser: Mathematics Year 8 Spring 1

Big Idea: Algebra

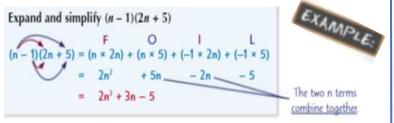
Kev Vocabulary

Simplify, Substitute, Equivalent, Coefficient, Product, Highest Common Factor (HCF), Inequality.

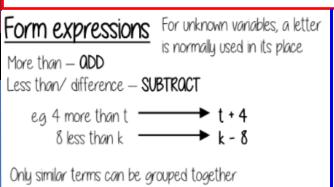
What do I need to be able to do?

By the end of this unit you should be able to:

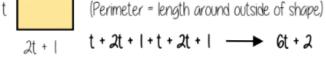
- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

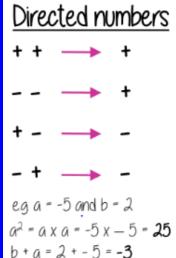

DOUBLE BRACKETS — you get 4 terms, and usually 2 of them combine to leave 3 terms

There's a handy way to multiply out double brackets — it's called the FOIL method and works like this:

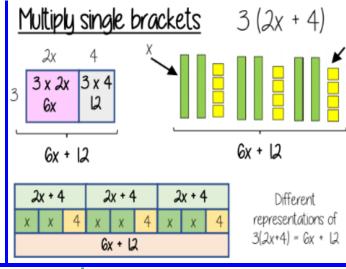

First — multiply the first term in each bracket together Outside — multiply the outside terms (i.e. the first term in the first bracket by the second term in the second bracket)

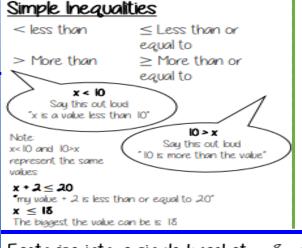
Inside — multiply the inside terms (i.e. the second term in the first bracket by the first term in the second bracket)

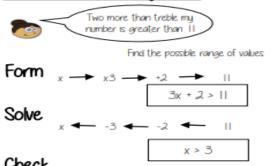

Last — multiply the second term in each bracket together



Suggested websites: Maths Genie, Save My Exams and Corbett Maths




eg Find the perimeter of this shape



Form and solve inequalities

Check This would suggest any value bigger than 3 satisfies the statement 10 x 3 + 2 = 32 ✓ 3x3+2= II ✓

<u>Olgebraic</u> constructs

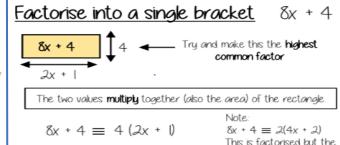
Expression

a sentence with a minimum of two numbers and one maths operation

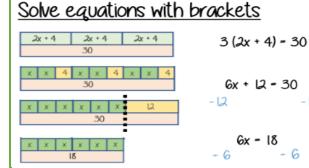
Equation

a statement that two things are equal

Term


a single number or variable

Identitu


On equation where both sides have variables that cause the same answer includes =

Formula

O rule written with all mathematical sumbols eg area of a rectangle a = b x h

HCF has not been used

Expand the brackets Substitute to check your answer. This could be negative or a fraction or decimal

3(2x + 4) = 30

Knowledge Organiser: Mathematics Year 8 Spring 1

Big Idea: Algebra

Key Vocabulary

Sequence, Term, Position, Linear, Non-linear, Difference, Arithmetic, Geometric, Base, Power, Exponent, Indices, Coefficient, Simplify, Product.

What do I need to be able to do?

By the end of this unit you should be able to:

- Generate a sequence from term to term or position to term rules
- Recognise arithmetic sequences and find the nth term
- Recognise geometric sequences and other sequences that arise

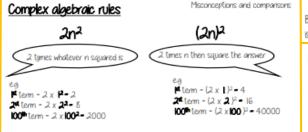
What do I need to be able to do?

By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Suggested websites: Maths Genie, Save My Exams and Corbett Maths

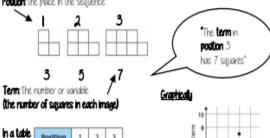
Linear and Non Linear Sequences


Linear Sequences — increase by addition or subtraction and the same amount, each time | Position the place in the sequence Non-Inear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci.

- Do not plot as straight lines when modelled graphically
- The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Seavence — bok out for this ture of seavence

Each term is the sum of the previous two terms.



misconceptions with this

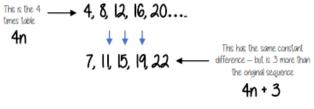
calculation but break down

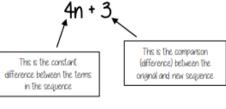
the powers

Sequence in a table and graphically

Because the terms increase by the same addition each time this: thear — as seen in the graph

power of n. The values increase at a constant rate Substitute the number of the term you are looking for $2n-5 \longrightarrow$ in place of 'n' Miterm = 2 (0 - 5 - -3 24 tem - 2 (2) - 5 - -1 100th term = 2 (100) - 5 - 195 Checking for a term in a sequence Form on equation is 201 in the sequence 3n - 4? Solving this will find the position of the term in the sequence ONLY an integer solution can be in the sequence

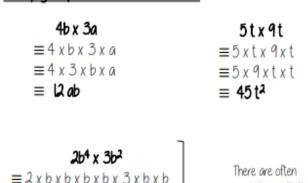

Sequences from algebraic rules This is substitution

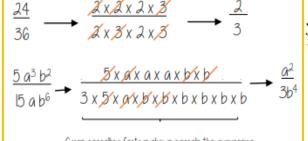

3n + 7

This will be linear - note the single

 $3n^2 + 7$

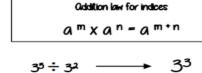
Finding the algebraic rule

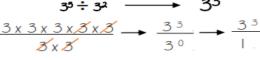



Oddition/Subtraction with indices

Multiply expressions with indices

Divide expressions with indices


Cross canceling factors shows cancels the expression


23 a7 u2 This expression cannot be divided (cancelled down) because there are 5 d b6 no common factors or similar terms

Oddition/Subtraction laws for indices

The base number is all the same so the terms can be simplified

Subtraction law for indices a = a = a = a = n