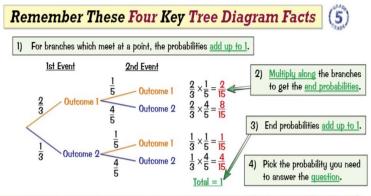
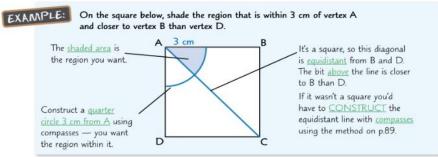
Knowledge Organiser: Mathematics Year 11 Higher Spring Term 2


Big idea: Probability and Statistics Key skills:

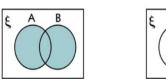
Construction and Loci Construct and interpret tree diagrams Draw and interpret scatter graphs Draw and interpret Venn diagrams

Key Vocabulary Loci, Construct, Complement, intersection, union, outcomes, probability, Venn diagram, sets

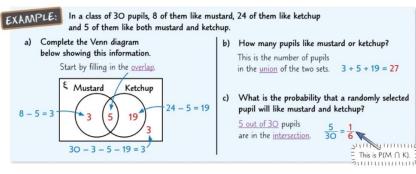

Tree Diagrams

Tree diagrams can really help you work out probabilities when you have a combination of events.

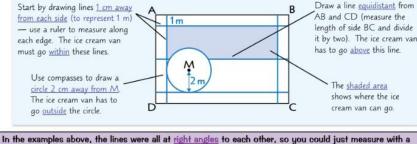
Finding a Locus that Satisfies Lots of Rules


In the exam, you might be given a situation with <u>lots</u> of different <u>conditions</u>, and asked to find the <u>region</u> that satisfies <u>all</u> the conditions. To do this, just draw <u>each locus</u>, then see which bit you want.

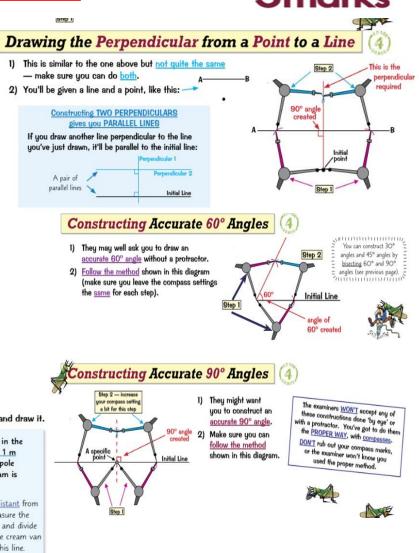
Suggested websites: Maths Genie, Save My Exam and Corbett Maths


Show Sets on Venn Diagrams (5)

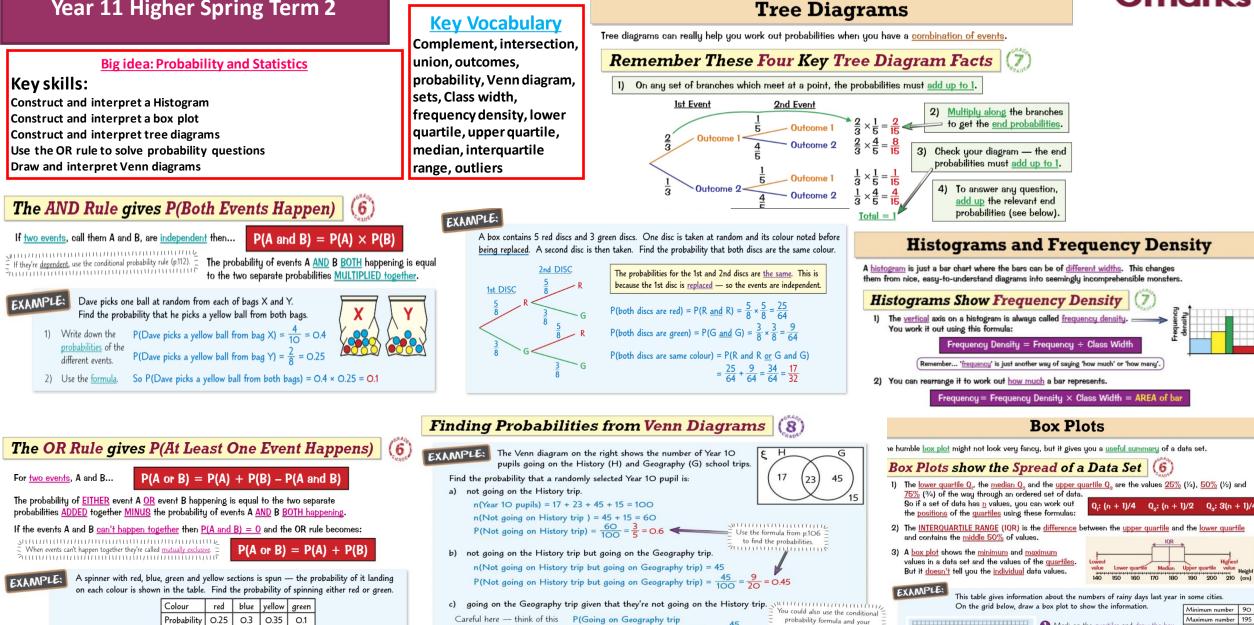
- 1) On a <u>Venn diagram</u>, each <u>set</u> is represented by a <u>circle</u>.
- The <u>universal set</u> is everything <u>inside</u> the <u>rectangle</u>.
- 2) The diagram can show either the <u>actual elements</u> of each set, or the <u>number of elements</u> in each set.


The <u>union</u> of sets A and B (written $A \cup B$) contains all the elements in <u>either</u> set A <u>or</u> set B — it's everything inside the circles.

The <u>intersection</u> of sets A and B (written $A \cap B$) contains all the elements in <u>both</u> set A <u>and</u> set B — it's where the circles overlap. The <u>complement</u> of set A (written A') contains all members of the universal set that <u>aren't</u> in set A — it's everything outside circle A.



You might be given the information as a <u>wordy problem</u> — work out what you're being asked for and draw it.


EXAMPLE: Tessa is organising a village fete. The fete will take place on a rectangular field, shown in the diagram below. Tessa is deciding where an ice cream van can go. It has to be <u>at least 1 m away from each edge</u> of the field, and <u>closer to side AB than side CD</u>. There is a maypole at M, and the ice cream van must be <u>at least 2 m away from the maypole</u>. The diagram is drawn to a scale of 1 cm = 1 m. Show on it where the ice cream van can go.

In the examples above, the lines were all at <u>right angles</u> to each other, so you could just measure with a <u>ruler</u> rather than do constructions with compasses. If the question says "<u>Leave your construction lines</u> <u>early visible</u>", you'll definitely need to get your compasses out and use some of the methods on p.89-90.

Knowledge Organiser: Mathematics Year 11 Higher Spring Term 2

given not going on History trip) = $\frac{1}{45+15}$

 $=\frac{45}{60}=\frac{3}{4}=0.75$

as selecting a pupil going on

not going on the History trip.

the Geography trip from those

P(red or green) = P(red) + P(green)

= 0.25 + 0.1 = 0.35

The spinner can't land on both red and green so

use the simpler OR rule. Just put in the probabilities

answers to parts a) and b).

PITTITITITITITITITITI

Mark on the <u>quartiles</u> and <u>draw the box</u>.

(3) Mark on the minimum and maximum

points and join them to the box with horizontal lines.

2 Draw a line at the median

0

60 80 100 120 140 160 180 200

Lower quartile

Upper quartile

Median

130

150

175

Suggested websites: Maths Genie, Save My Exam and Corbett Maths